منابع مشابه
Activation of a human chromosomal replication origin by protein tethering
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4(DBD) (DNA binding domain) fusions with Orc2...
متن کاملHuman replication protein A unfolds telomeric G-quadruplexes
G-quadruplex structures inhibit telomerase activity and must be disrupted for telomere elongation during S phase. It has been suggested that the replication protein A (RPA) could unwind and maintain single-stranded DNA in a state amenable to the binding of telomeric components. We show here that under near-physiological in vitro conditions, human RPA is able to bind and unfold G-quadruplex stru...
متن کاملDiffusion of human replication protein A along single-stranded DNA.
Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during ...
متن کاملPhosphorylation of human replication protein A by the DNA-dependent protein kinase is involved in the modulation of DNA replication.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 o...
متن کاملUltrastructural Study of Rotavirus Replication and Localization of the Intermediate Capsid Protein VP6
Rotavirus, a triple-layered non-enveloped member of the Reoviridae family, obtained a transient membrane envelope when newly synthesized subviral particles bud into the endoplasmic reticulum (ER). As rotavirus particles mature, they lose their transient membrane and obtain outer layer. It is mostly believed that only double layered particles bud into the ER. The present study describes that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2003
ISSN: 0021-9258
DOI: 10.1074/jbc.m301265200